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A class of simple two-dimensional cellular automata with particle conservation 
is proposed for easy simulations of interacting particle systems. The automata 
are defined by the exchange of states of neighboring cells, depending on the 
configurations around the cells. By attributing an energy to a configuration of 
cells, we can select significant rules from the huge number of possible rules and 
classify them into several groups, based on the analogy with a binary alloy. By 
numerical calculations, cluster growth is found in two kinds of phases which 
reveal gas~olid coexistence and liquid droplets. Normalized scaling functions 
are obtained, and dynamical scaling is examined. 

KEY WORDS:  Cellular automata; particle conservation; clusters; spinodal 
decomposition; dynamical scaling. 

1. I N T R O D U C T I O N  

To investigate complex dynamical systems numerically, Monte Carlo and 
molecular dynamics methods are usually used. But in recent years cellular 
automata  (CA) (1) have been adopted more and more as another 
method. (1'2) Several CA models have been developed for simulations of 
fluids (3) and for lattice models like the Ising (z4) and Potts (s~ models. 
Problems of ergodicity were studied by reversible CA. (6) Since CA are 
discrete in time, space and state, it is difficult to construct models which 
correspond directly to real physical systems. But as the number of possible 
CA is huge, one can expect to find rules to correspond to most real 
systems. Once a good rule is found, we can use it as an efficient simulation 
method. From another point of view, CA can be used as "mind stretchers" 
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which show complex phenomena that are seen in the real world, but are 
often assumed to require much more input structure. 

One of the most interesting problems is the pattern dynamics in 
systems with many particles interacting by short-range couplings. Pre- 
viously we had studied a one-dimensional CA model (71 for such systems. In 
this paper we will extend it to the two-dimensional case with particle 
conservation, and study several aspects of pattern growth as a model of 
spinodal decomposition (a similar model (8) was studied recently). We show 
that rules with physically realistic behavior exist, and find two types of 
cluster growth which remind us of gas-solid coexistence and liquid droplet 
formation. 

In Section 2, we explain and classify the CA studied in this paper. 
They are a subset of those CA which can be interpreted as systems of con- 
served particles on a two-dimensional lattice. Section 3 shows the results of 
numerical simulations. To characterize the evolution with time, we define 
two quantities: the mean density nl0 of particle-hole pairs, and the density 
v of sites which change at one time step. By studying them in detail, 
including their scaling properties, we show that there are at least two types 
of growth. The mechanism of cluster growth is summarized in Section 4. 

2. PARTICLE-CONSERVING CA 

2.1. Elementary Processes 

Extending the previous one-dimensional case, we consider a 2d square 
lattice on which the variables sj take only two values sj = 0 or sj = 1. As the 
only elementary process, we assume that two neighboring sites can 
exchange their states. Thus the total "spin" 52jsj is conserved as in 
Kawasaki's (9) Ising model. This exchange is done deterministically, 
depending only on the pair and the configuration of the six sites surrounding 
the pair. Without restriction on the kind of rule, there would be the 
tremendous number of 2 64 rules. We reduce this by attributing an energy 
to each of the six bonds linking the pair with its six neighbors, and 
performing the exchange iff the total energy is above a certain threshold 
E , .  This is the main difference with respect to Monte Carlo simulations, 
where flips are decided statistically, on the basis of energy differences or on 
the basis of the energy of the final state. 

Without restricting generality, we can assume the energy of a pair '10' 
to be zero, and the energy threshold to be 

E , =  • 
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Fig. 1. Configuration around the pair '10' where a, b, c, d, and  e are 0 or 1. If A E  defined by 
Eq. (1) is greater than 0, the '10' pair updates to '01'. 

The energies of '00' and '11' pairs are called Eo and El,: respectively. 
Consider a central pair ~ as in Fig. 1 (for a central pair '01' the 
arguments are completely analogous; central pairs '00' and '11' need not 
considered anyhow), and denote by e the sum of 'up' neighbors of the left 
spin, and by fl the sum of 'up' neighbors of the right spin, i.e., this con- 
figuration is denoted by (c~, fl). Then the pair is exchanged if and only if 

A l E :  0~E 1 q- (3 --fl) E o -  E ,  > 0  (1) 

2.2. Coding and Classifying the Rules 

The easiest way to visualize each possible rule is graphically. If we 
represent each possible neighborhood of a '10' pair by a point on a 4 x 4 
lattice with coordinates (cq/3), then Eq. (1) defines a straight line separating 
lattice points with A E > O  from points with A E < O  (see Fig. 2). Each 
straight line (i.e., each rule) separates the 16 possible neighborhoods into 
two groups, one of which leads to an exchange and the other does not. 
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Fig. 2. Each straight line dividing the 16 points of this lattice into two groups of "on"  
( A E >  0) and  "off" ( A E <  0) points corresponds to a CA rule. When E 1 < 0 and E 2 < O, the 
full line corresponds thus to N~ule = 0FFF ,  while the dashed line is Nrule = 8CEF.  
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We can thus encode each rule by a number N r u l e  between 0 and 
216-  1, where the kth binary digit is 1 iff the configuration (c~,/3) with 

= [k/4],  /3 = (k mod 4) leads to an exchange. In the following, Nrule will 
always be written as a four-digit hexadecimal number. For instance, F F F F  
is 216-  1, and 0000 is 0. As an example of the encoding, we take the rule 
represented by the full line in Fig. 2, whose code Nrule is 0FFF. The full line 
separates the configurations (3,/3) (where /3=0, i, 2, 3) with AE<O from 
the configurations with AE>O. This implies that the (3 x 4 +/3)th binary 
digit of Nrule is 0 and the other digits are 1, i.e., the binary code is 
0000111111111111 and the hexadecimal code is 0FFF. 

It is obvious from the geometrical construction that only a tiny 
fraction of all 216 rule numbers correspond to allowed rules (the 
others correspond to divisions by curved lines in Fig. 2). By an exhaustive 
search, we found altogether 174 allowed rules. 

If we interpret the system as a lattice gas, with s = 1 being a particle 
and s = 0 an empty place, then Fig. 3a corresponds to an isolated particle 
surrounded by vacuum, while Fig. 3b corresponds to an isolated hole. 

Assume that the hole in Fig. 3a has the same number of hole 
neighbors as the particle in Fig. 3b has particle neighbors, a + b + c = 
3 - d - e - f  Then, the isolated particle in Fig. 3a has a bigger (smaller) 
energy than the isolated hole in Fig. 3b if E o > E  l (Eo <El ) .  Thus, if 
Eo > El,  then the dominant mechanism is the hopping of particles, while 
the mobility of holes is larger if Eo < El.  

Another classification is based on the analogy with a binary alloy, 
with sj = 0 and sj = 1 representing the two atoms A and B. If Eo + E1 < 0, 
then atoms of the same kind are more tightly bound and tend to cluster as 
in a eutectic alloy. In the inverse case E 0 + El > 0, the system behaves like 
a solution since different atoms tend to mix. 

Using Em= (Eo + El)~2, this leads to a classification into eight groups, 
if we distinguish in addition by the strength of the particle hole asymmetry. 
This is summarized in Table I. 

We should point out that this is a classification of maps 
neighborhood ~ energy. It is not a mutually exclusive classification of CA 
rules. For  instance, rule F F F F  (always exchange) can arise from all classes 
when E ,  = --1. 

Fig .  3. 
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C o n f i g u r a t i o n  ( a )  i n d i c a t e s  a n  i s o l a t e d  p a r t i c l e  a n d  (b )  a n  i s o l a t e d  h o l e  c o r r e -  

s p o n d i n g  to  (a) ,  w h e r e  a = 1 - . f , ,  b = 1 - d ,  a n d  c = 1 e. 
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Eutectic alloy Solution 

Particle El<Era<O; I: E o > 0  E1 > E,~ > 0; V: E 0 < 0  

I I : E 0 < 0  V I : E o > 0  
Hole  E o < E,~ < 0; I I I :  E 1 < 0 E 0 > E,, > 0; VII: E 1 > 0 

IV: E 1 > 0 VIII :  E 1 < 0 

2.3. Dynamics 

Though we have defined above the rules for updating each pair, we 
have not yet mentioned how we select the pairs in the two-dimensional 
lattice space. One possible way to select them is random, where the pair to 
be updated is asynchronously and randomly selected. However, in what 
follows we adopt synchronous and deterministic dynamics. 

In our synchronous dynamics, one time step consists of four processes, 
which are described in Figs. 4a and 4b. Under these dynamics each site can 
interact with every nearest neighbor site in two time steps. With these 
dynamics, a free particle described by the FFFF code moves along the 
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Fig. 4. (a) Four processes of updating which constitute one time step. Two neighboring sites 
connected by a solid line indicate the pairs to be updated according to the elementary rule. 
(b) The next time step to part (a). The origin of the pattern (a) is shifted to the coordinate 
(1, 1). 
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diagonal direction one lattice spacing per one time step even if two such 
particles happen to collide. Therefore this system is not mixing. If we con- 
sider more complex dynamics, the mixing property (1~ can be recovered, 
but the details are not studied in this paper. 

3 .  N U M E R I C A L  E X P E R I M E N T S  

3 . 1 ,  E x a m p l e s  

We will show numerical experiments for several rules, concentrating 
on the eutectic alloy-like phase in the groups I and II, with E ,  = -1 .  

As the main observables we measure the density n~o of '10' pairs 
(measured per lattice site, i.e., noo + nlo + n H =  2), and the density v of sites 
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Fig .  5. T y p i c a l  e x a m p l e s  o f  p a t t e r n s  g e n e r a t e d  s e q u e n t i a l l y  w h e n  E1 a n d  E 0 a r e  d e c r e a s e d .  
D o t s  i n d i c a t e  s t a t e  1. C o n c e n t r a t i o n  o f  '1 '  s i tes  is 0.3.  (a ,  b )  G r o u p s  I a n d  II ,  r e s p e c t i v e l y ,  

d e f i n e d  in  S e c t i o n  2.2.  T h e  h e x a d e c i m a l  n u m b e r s  u n d e r  t he  p a t t e r n s  a r e  t h e  c o d e s  o f  ru les .  
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which change state at one time step. The quanti ty v describes the activity 
or 'softness' of the system. 

The total energy of the system can be written as 

E=N(n11El +nooEo)=2N[(l -c)  Eo+cE1]-NnloEm (2) 

where N is the total number  of sites and c is the concentrat ion of '1' sites, 
c= 1/NY',jsj, We have used the relation 2c=n~1 + nlo/2. 

To observe the appearance of order, we slowly decrease the energy of  
the system initially obeying rule F F F F .  This procedure corresponds to 
cooling a gas in a real system, because the behavior  of rule F F F F  is similar 
to that  of a free gas. In our  model the decrease of  the energy implies the 
change of  the local rule. For  numerical experiments, we initialize the dis- 
tr ibution of  '1' sites and evolve the system under the rule F F F F .  After some 
time steps, each of  the energies E 0 and E1 is lowered and the rule changes. 
The updat ing of sites is continued, until a s tat ionary state is achieved. Then 
n~0 and v are evaluated. This procedure is iterated until no excitation (i.e., 
no change) occurs. 

F r o m  numerical simulations for classes I and II  with E ,  = - 1 ,  we find 
that the system becomes a solid state from a fluid one as the energies Eo 
and E 1 are decreased. Some typical examples of patterns are shown in 
Fig. 5 and the evaluated n~o and v are shown in Fig. 6. These figures 
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Fig. 6. Examples of two quantities n~0 and v obtained for the group I when E 1 and E 0 are 
decreased. Solid circles indicate n~0 and open squares indicate v. Initial distribution is random 
with concentration c. The graph is obtained for one subgroup belonging to I. 

o . ~  I 
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indicate that the activity v and the number of 1-0 bonds nlo decrease as the 
energies E 0 and E 1 are decreased, i.e., from Eq. (2) and Em < 0, the system 
tends to develop into a state with lower total energy E. 

Viewing Fig. 6, we can find several states with finite v and 
nlo < 2 c ( 1 -  c), where 2 c ( 1 -  c) is the density of '10' pairs for random dis- 
tribution. In these states, the system is active, but some ordering can be 
induced. Two typical rules resulting in such states are 01FF with c = 0.3 
and 0FFF  with c =  0.7. As is shown in Fig. 6, the rule 01FF generates a 
phase which is similar to a gas-solid coexistence system. 

From Figs. 5a and 5b, the appearance of the ordered phase is roughly 
classified into the following routes: 

I gas --+ gas + solid --+ solid 

II gas --+ solid 

3.2. Cluster G r o w t h  

As is discussed above, nonperfect ordering with ongoing activity can 
be found in group I. Thus, we explore the two types of systems given by 
rules 01FF and 0FFF. 

First we study the characteristics of the rule 01FF. The concentration 
dependences of the quantities nl0 and v estimated by numerical experiments 
started from random configurations are shown in Fig. 7. Large deviations 
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Fig. 7. Concentration dependence of nl0 and v for the system of code 01FF. Solid octagons 
indicate nl0 and open squares indicate v. The broken line represents the two quantities nlo and 
v for a free gas code FFFF.  It is given by 2 c ( 1 -  c). 
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of nto from the value of a free gas system when 0.25 < c <0.8 indicate the 
growth of some kind of order. Since v is positive when c < 0.8, the system 
induces some order with activity when 0.25 < c < 0.8. Figures 8a and 8b 
show the temporal behavior of patterns for concentration 0.3 and 0.5. 
These figures remind us of a gas-solid coexistent state, because there exist 
large rigid clusters in the sea of many free particles. A large cluster is 
created after a long time by a complex collision process. The remaining 
particles outside the dominant cluster are still active, but they cannot make 
other large clusters. Examining Figs. 8a and 8b, we can say that the charac- 
teristics of the growth and the forms of the clusters are different, depending 
on the concentration. For  0.2 < c < 0.5, many small clusters appear in early 
time stages, but only one large cluster dominates after a long time in a 
finite system. For  0.5 < c, however, a percolating cluster appears in very 
early time stages and the cluster deforms from a complex form to a very 
simple one. The c = 0.5 is an approximate threshold level to differentiate 
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Pat te rn  change  for the sys tem of code O1FF initiated from the r a n d o m  configurat ion 

with (a) c = 0 . 3  (b) c = 0 . 5 .  
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Fig. 9. Concentration dependence of nt0 and v for the system of code EEEE. Octagons and 
squares indicate nm and v, respectively. The broken line represents the two quantities for a 

free gas system. 

these two types of cluster growth, but the accurate threshold is not known. 
In each case the mechanism of cluster growth consists of adhesion and 
evaporation processes of particles. 

Another type of cluster growth is seen under the rule 0FFF with large 
concentration of T sites. Since the system with small c is more easily 
understood than the system with large c, it is convenient to study the rule 
EEEE, which is equivalent to 0FFF by the particle-hole symmetry. The 
two characteristic quantities n~o and v are calculated numerically and 
shown in Fig. 9. We can observe large ordering for 0.1 < c < 0.6, because 
nto and v differ largely from those of a free gas state. An example of tem- 
poral behavior is shown in Fig. 10 for c = 0.3. The figure suggests that the 
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Fig. 10. Pattern change for the system of code EEEE with c = 0 . 3 .  
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mechanism of cluster growth is quite different from that of rule 01FF. Since 
isolated particles cannot move, the adhesion and evaporation of particles 
are not significant, but the cluster motion becomes important. Therefore 
the mechanism of the cluster growth consists of cluster movement, cluster 
deformation, and cluster-cluster coalescence. These dynamical charac- 
teristics remind us of a system with many liquid droplets. Resembling the 
rule 01FF, there is a critical concentration that separates the two types of 
cluster distribution, one with a broad distribution of clusters, and the other 
with very few, very large clusters. The critical concentration is nearly equal 
to 0.3, but the precise value has not been obtained. 

3.3 Scaling Functions 

From the patterns of cluster growth obtained in Section 3.2, we can 
conjecture that dynamical scaling will be satisfied in those clustering 
processes. We have found numerically that scaling seems indeed to exist 
in a certain time interval. 

The scaling function is derived from consideration of spinodal decom- 
position. (n) The correlation function is written as 

C(r, t) = 1 /N  ~ < [c(r,, t) - e] [c(~, + ~, t) - o] ) 
i 

(3) 

where c(ri, t) is the state value (0 or 1) of the site ri. The structure function 
is obtained by the Fourier transformation of the correlation function 
C(r, t), 

S ( k ' t ' = ~ e i k r C ( r ' t ' = l / N ( ~ ,  . e i k r ` C ( r ' t , - c , 2 ) r  (4, 

Since our system is assumed to be isotroplc, we reduce the two-dimensional 
structure function to a one-dimensional one by averaging over the circle of 
radius rkf, i.e., 

S(k ,  O=Z' s ( k ,  t ) / y '  1 (s) 
/ 

where Z '  is the summation over k which have the same absolute value rkt. 
For  numerical calculations, finite-size effects must be taken into account 
and the structure function must be modified in some degree. We define the 
modified structure function as follows: 

S~(k, t) = S(k, t) - S~r~t(k) for k~, (6) 
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where Scrit(k) is the structure function for the critical concentration for 
cluster growth and k,. is a cutoff wave number. As a characteristic wave 
number, we define the mean wavelength, i.e., 

(k(t) ) = • kSx(k, t)//E k Sl(k' t) (7) 
k 

Using these quantities, we define a normalized scaling function 

x = k/(k(t) ) 
/ 

F(x, t)= L/~<k(t) ) ~ Sl(k, t ) /~  kSl(k, t) (8) 

If the scaling assumption is satisfied, the function F(x, t) does not depend 
on time t. 

We show the numerical results for S(k, t) and F(x) in Fig. l l .  In every 
case, we have averaged over 30 samples with different initial configurations 
in a 128 x 128 lattice space. For  the rule 01FF, while the critical concentra- 
tion is assumed as Ccrit=0.22, Ccrit=0.65 for rule EEEE. The figures 
indicate that the dynamical scaling is approximately attained in a certain 
time duration for every case. To obtain the scaling functions, we exclude 
very early times because there the initial distribution affects the dynamics, 
and very late stages, where finite-size effects become important. We expect 
that the dynamical scaling character can be observed over a longer time if 
the system size is increased. 

4. DISCUSSION 

In the cluster growth under the rule 01FF, elementary processes are 
adhesion and evaporation of particles, and the rate of adhesion to a large 
cluster exceeds a little that of evaporation from the cluster. Therefore larger 
clusters grow slightly faster than smaller clusters and finally only one 
largest cluster survives. In the case of the rule EEEE, on the other hand, 
activity of the cluster surface is the cause of cluster movement and deforma- 
tion. Thus, cluster growth is caused by collision of neighboring clusters in 
the course of cluster deformation. The mechanism can be examined by 
changing the automata rule; too much activity of the surface puts the 
system in an almost gas phase and low activity induces no cluster growth. 
From these facts, we think that the dynamical scaling is attained according 
to the subtle balance of adhesion and evaporation for the rule 01FF and 
according to a degree of surface activity for the rule EEEE. 

Since the dynamics defined in Section 2.3 is one of many possibilities, 
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other dynamics  may generate different pat tern and time characters. But in 

several examples that we have examined numerical ly the asynchronous  

dynamics  using r a n d o m  selection of pairs have the same pat tern characters 

as that of the synchronous  dynamics  we have studied, but  the temporal  
behavior  of these two models is different. The details will be clarified in 

another  paper. 
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